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ABS TRACT

Let ~7 = {f( . 
, 0): 0 E j }, J an interval , be a family of univariate

prob abil i ty densi t ies  (wrt Lebesg ue measure) on an interval I . First , a

necessary a nd suff ic ient  condition is proved for ci to be identifiable

whenever J C C0(J) , the class of continuous functions on J vanishing

at cc I f 1G is a G-mixture of the densities in ~ with G unknown ,

an est imator  G based on and 8 = {f(x , • ) :  x E I )  is provided such

that  G _-
~~~ _> G under certain cond itions on ~ . If X1, . ..  , X~ are iid

random variab les from 
~G’ an estimator Ô is provided such that

G~ (X 1, . .  . , X , • )  —~~~~~~ G(~ ) almost surely under certain conditions on ~
and G . Furt h er more, it is shown that 

~G (x) - -
~~ 0 a. s. and

in L2 with rates like 0(~~_ C
) ( C  ~

> 0) undet~certain conditions on the

densi ty  est imator f G ( x) involved in the definition of . The conditions

of variou s theore ms are verified in the case of location parameter and scale

pa rameter families of densities.
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ESTIM ATIO N OF A MIXING DISTRIBUTION FUNCTION

J. R. Blum and V. Susar la

1. Introduction and summary . Let f be a Borel measurable function from

I X J to (0 , ~ ) such that f  f(x , 0)d x = 1 for each 0 in J where I and
I

I are interv a ls contained in R = (~~ Qo ,cc )  and 8 and 2 be the collections

of sections of f with the first  coordinate (in I) and the second coordinate

(i n J) fixed re spectively. For a probability distribution function G on J

let

( 1. l) fG(x) = f f(x , 0)dG( 0),  x in I -

I

We provide an equivalent condition for the identifiabil i ty of ci (for

the definition of identifiabili ty,  see (Al)) in Sectio n 2. In Section 3, we

consider the problem of est imating G in terms of and 8 . To obtain

an estimate G~ of G, we solve a sy stem of equalities ari d inequalities

and th en show that  Gn converges weakly to ( W >) G under some con-

ditions on ‘~ . If G and are unknown , but iid random variables

Xe, . . .  are observable (this is the standard empirical Bayes situation

of Robbins [4] described in Section 4), the n we construct (in Section 4)
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2) Grant fro m the Graduate School of the University of Wisconsin-Milwaukee;
3) HEW , NIH Grant l - R 0 - l - G M  23129 -01 ;
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est imates G ( X 1, . . Xn~~
) which ~~~~~ G ( )  almost surely (a. s . )

under some conditions on 8 . It Is then immediate that f Of(x , e)d G~
J

-. f  Of(x , 0) d G(0) a. s. whenever Of(x , 0) E C(J) . Furthermore , it is

J
shown that  our method of construction of G provides rates for a. s. andn

L2 convergences of f~~ (x) - 

~~~~ 
to zero for each x under some

additional co nditions on 2 . In Section 5, all the above result s are

shown to hold for location and scale parameter families of Lebesgue

densities u nder rather weak conditions.

The result s of Section 3 are not only of mathematical interest , but

also provide an intuitive basis for the result s of Section 4. In Sections

4 and 5, we take I I = R as other cases can be treated with obvious

modifications of the method presented here. Throughout , G is assumed

to be a distribution function with support in J .. The estimator and its

propertie s are compared with three other estimators for G in Section 6.

In Section 4 , we discuss the application of the main result of this paper

to empirical Baye s estimation problems.

2. Identifiability . For the distribution function G In (1. 1) to be estimable

in terms of 1G 
and 8, it is obviou s that the following con~1tion should

be satisfied .

= fH(c )  for all x in I ~ H G = 0

This condition is called the Identifiability (of ci) condition. (For example ,

see Teicher [71. )

-2- 
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With C0(J) de noting the Banach space of con t inu ou s  f u r i n t i ~ n s ~j n

the interval  J which vanish at ~ and normed by

(2. 1) j I g f l  = sup {~ g(y) j  y in J }

we obtain

Th e orem 2 .1 .  Let ,~~ C C0 (J) . Then (Al) hold s if and only if 2 generates

C0 (J) in the supremum norm (2. 1).

Proof. Let (Al) hold . Let B be the closed subspace generated by 8

If B 
~ 

then there exists a g in C0(J) - B and a bounded linear

functional ~ on C0(J) such that ~‘ (g) = 1 and ~~( f )  = 0 for f in B

Also, by the Ries z representation theorem , there exist non-decreasing

non-negative functions and K2 of bounded variations on J such that

c~ (f) = f f(y) d(K 1 - K2 )(y) for f in C0(J)
I

Since ~~‘ ( f )  = 0 for f* in B, it follows that f f(x , O)d K1(0) =

j ’ f(x , e)dK 2 (O) for all x in I which , by (Al), implies that K1 - K2 =
I

constant .  But then , this implie s that ~~(g) =f g(y)d( K1 
- K2 )(y) = 0

I
which Is a contradiction since ~ (g) = 1 . Hence ~ generate s C0(J)

Conversely, let 2 generate C0(J) and (1. 1) hold at G and H

We show that G - = 0 . By assumption

(2. 2) J ’ f(x , 0) dG(0) = f f(x , 0) dH(O) for all x in I

Since ~9 generates C0(I) in the supremum norm , (2. 2) can be extended

to

— 3  —
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(2. 3) f g(0) dG(0) = f g(0) dH (9) for all g In C0(I)
J J

Since ~~(g) = f  g(0) dG(0) is a bounded linear functional on C0(J)
J

whenever G is of bounded variation on J, the uniqueness part of the

Rie sz represent ation theorem and (2. 3) show that G - H = constant. This

co mpletes the proof of the theorem since G and H are distribution

functions on J

3. Construction of an estimator of G in (1. 1). In this section, we de-

fine an estimator Gn ( ( 3 . 6 ) )  of G in terms of 
~G and 2 . We con-

sider in detail the case I = I = R only and point out the required changes

if I or (or and) I Is an (are) interval( s).  Throughout this section , the

integration is over ~~~~~~ and the limits are as n -, ~ unless other-

wise sta ted.

For a fixed partition

0 ( ..c c ) < 0  (= - n ) < 0  <. . .n, -l n , 0 n , l
(3. 1)

< 8  (= n ) < 0n, m(n) n , m(n) + l

with

(3. 2) o
n = max fo _ 0

fl, j ..l f J  = l , . . . , m(n) ) -~ 0

and for x in R , and for I = -1, . . . , m( rl) , let

M 1(x) = sup { f(x , 0) 1 °n, i ~ 0 
~ 

0
~~~ +~

)

-4-
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and

(3 .4 )  m~~,( x) i n f { f ( x , 0 ) 1  0~ , , ~ 0~~ ~~~ f-1~

Let 
~n = 

~~n , .
~~~~ ~ P~ m(n)  

} be such tha t

(I ) Pn ~ 
0 and ~~~~~

(3. 5) (i i)  
~~~~~ ~n , I Mn ~~~ ~ ~G~

’<
~ 

and

I ~~m( n)
1.. ( i i i )  

= -l ~n , ~ 
m

~ 1(x) 
~

where (Ii)  and (i i i )  hold for x in (o~ 0’ •

~~~~~ 

0n , m (n )~
Let P = { p I  p is a solution of (3 . 5) )  . That P is not empty follows

n I + lsince one such solution is given by p = f  ‘ dG for I = -1, . . . , m(n)
, 0n IFor any p~ in P , defi ne

10
— (3. 6) G (y) = P~ -l + 

~n , 0 0n, 0 ~~ ~~ 
< 0

n , 1

L ~~~~= -l ~n , I ~~~~~ ~~ ~ 
< ~~~ 

~~~~~ 

I = 1, .  . . m(n)

Clearly G Is a discrete distribution function on R

Note. The solution of (3. 5) Is a simple linear programming problem and

there are efficient  computational algorithms availabe for the solution of

such InequalitIes. (3. 5) can be solved theoretically for 
~n without the

assumption that x is in {e 0 }, but such a solution mightn , 0, . . . , n , m(n)
be diff icul t  to obtain.

- 5 —
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The result leading to G W > G is

Theorem 3. 1. Let f(x , . )  e C0 ( R )

(A2) l im sup I f(x , 0) - f(x ’ , 0) I = 0, and
x~ —~’x 0

(A3) for each e > 0 ~ 5 , ~ > 0 ~ 1 x - x l  < 6 and

- o l < 6 I f ( x , 0 )  - f(x ’ , 0) 1 < c

Then f f(x , 0)dG~ (0) f f ( x, 0)d G(0) = fG(x)

Proof. Without loss of generali ty , let I x !  < n . By the choice of the

part ition (3.1)  and ( 3 . 2 ) ,  the re exists a sequence {O n j (n ) ) such that

j (n)  
-

~~ x . We also observe that f(x , .)  E C 0( R) and (AZ ) imply that

(3. 7) for each ~ > 0 ~ 6, M > 0 ~ Ix ’ -x i  < 0, I 0 1 > M ~ f(x ’ , 0) < c

By the definitions of p and G given .in (3 .4)  a nd (3. 6) respectively,

P~~1 m fl i~ °n J (~ ) ) 
~ ‘~~°n , j ( n) ’ 0)d Gn (0)

~ Pr ,  Mn I (O n j (n ) )

Now observe that 0 < D (= the difference between the extreme sides of
— n

(3. 8))

m( n)
< 

~~~ P~ j {M
n i~ °n J (n ) ~ 

- mf l , (0 n J ( n) ) )

< sup{ I f (x ’ , 8) - f(x ’ , 0’) I I x - x ’ I < o~ I 0-0’ I <

+ sup{ f(x , O)~ I x ’ -x I  
~ 

6n ’ l o t  > n }  

--— ~~~~~~~~~~~ -~~ -
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by the choice of the p~ r t i t i~ n 0 . . . 0 J ~r~d t h /  s ( ~iuencen , -l’ ‘ n , m ( n ) + 1  -

{o . } . This last  expression (and hence D ) -. 0 due t ,  ( A 3 )  m dn , j ( n )  n

(3 .  7). Hence , since the lhs of (3. 8) 
~ ~~~~~~~~~ ~ 

rhs of (3. 8) due to

( i i )  and ( i i i)  of (3.  5),

(3 .9 )  f 
~

On , j ( n )~
0
~~

Gn (0) - 

~G~
0n , J ( n ) ~ 

0

But 
~~~~~ j (n ) ~ ~~~~ 

by (AZ ) since °n , j (n )  
-. x . For the same reason ,

f f ( O~ j (n ) ’  O)d G - f f( x, O)d G (O ) -* 0 . This completes the proof in view

of (3. 9).

Corollary 3. 1. Let & C C0 (R ) ,  (Al); (AZ ) and (A 3) hold for eac h x in

P . Then Gn 
W > G . If , in addition , Of( x , 0) e C(R),  then

f  Of( x , 8)d G ( O ) -

~~ 
f  Of( x, 0) dG(e)

Proof. By Theorem 3. 1,

(3. 10) f f(x , 8) dG~ (0) -

~~ 
f  f(x , 0) d G(0) for each x in P

Since ~ C C0 (R) and (Al) hold s, ‘9 generates C0
( R )  in the supremum norm

(2.1) by Theorem 2.1. Therefore , (3 . 10) ca n be extended to fg(e)ciG (e)

-

~~ 
f  g( O) dG(o) for each g in C0 (R ) which is equivalent to the first

result. The second result is a consequence of the first result since

Of( x, 8) E C(R)

Remark 3. 1. If I = [a , b] and I = [c, d] with -~~~ < a, b, c, and d <~~~

the n take 8 a < 8 < . . .  < 0 < 0 = b with 6n, -l n , 0 n , m(n) n , m(n) + 1 n
= max{ O~~~ - 0~~~ - On , j _ l I j  0, 1, . . . , m ( n ) + l ) — ’ O and solve (3. 5) at

-7-
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t h t  ! th  s~i ;  w h n  x is in {x 1, x2 , . . . X
m(n)  +-l~ 

where {x 1, x2, . . .

x ) is d E nSe  i i ~ Im ( n )~~1

1. E s t i m a t i o n  of G when is unknown.  In th i s  section , as sume

tha t  the d i s t r i b u t i o n  funct ion  G and 
~G are unknown , I = I = P and that

X , .  . . , X are iid random variab 1e~ with common dens i ty  I . We ex-n G
hibit  Gn (

~ ) (= G ( X 1, . .  . , X , . ) )  such ~~at ~iL~~ G almost surely

(a. s . ) .  An ~lppl ic at i on  ~ f and motivation for the resul ts  of this section

is given in the lengthy Re mark 4. 2.

Let 
~G

(x) 
~
= 1~0(X 1, . . . , X .  x))  be an est imator of f

G ( x) such that

( A4) ‘1
~~G~~~ 

- 1
G~ 

) II -
~ 0 a. S.

where H II denotes the sup norm. For each fixed n , let be the

class of soluti ons obtained for (3.  5) when f
0 in (ii) and (ii i)  is replaced

by - e and 
~G + ~ respectively where e( = C )  is the smallest

positive number for which the class 
~ 

is not empty. This method of

choosing does not require e to be known In advance , 
~n Is well -

d efined for each n, and the method involves a linear programming problem.

Whe never the sample sequence is in the a. s. event A guaranteed to

exist by (A4) , the C( = C )  corresponding to that sample sequence at

st age n converges to zero for the following reason. Let C = z I I ~0(x 1,
X~~ .)  - 1G~ 

) l ( . Then c —‘ 0 by assumption. Moreover , p ~

riot empty for large n since II f  G(x l, . . . , x , .)  - 
~~ 

)lI < c implies

-8-
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t h at  
~~~~~ 

. . 

~~ 
w i t h  P~ , f rI G fo r  I = -1 , . . . , m(n)

n , I
i~ solu ~ i~~ b~~1 n ~~i i ~rj P . since c ( =  C ) < C

tm
, E —

~~ 0 . I ) e f i r i e
n n n

G~ ( . )  G (X 1, . .  . , X , .) )  by

(4 .1 )  G (y)  = G (y) of ( - - . 6 )  with p replaced by ~ where p =
n n n , n , n

{
~ , . . . ,~~~~ 

) is in
n- i  n , m(n)  n

With the above nota t ion , we obtain the following two theorems.  The

f i r s t  t h E ~oo~m is an analogue of Theorem 3. 1 for Ô The second theorem
n

pr ovides ra tes  of convergence for f~~~(x) - f
G

(x) -. 0 ~~ . s. and - 0 in L 2

Theorem 4. 1. Let ( P d )  and (A4 ) and for each x in R , the conditions of

Theorem 3. 1 holds.  Then 
~ 

W > G a. s . If , in addition , Of(x , 0) € 0(R)

then f Of (x , 0)dG (0) -~f Of(x , 0) d G(0) a. s.

Proo f. Let the sample sequence {x1,. . . , x , . . .  } be a fixed point in

the a . s. event A guaranteed to exist by (A4) . We show that G ( x 1, . . . ,

x , . )  w~~~ G ( . ) .
n

U nless otherwise stated , let x be fixed. Without loss of generality,

let n > l x i  and let ~ be as in the disc ussion preceding (4.1) and let

= 

~G~
< l’~ 

X
n~ ~ - 

~~ 
) Ii . As in the proof of Theorem 3. 1, let

0 . 
-. x . By the construction of and G

n, j ( n)  n n

m(n)

~~~~ ~n , I m n ~( O~ J (n ) ) 
~ I ~

0n , j ( n )~ 
0)d G~ (O) =

(4. 2) m(n )

~ ~~f z - l  P~~~~( O~~ J (~~) ) .

-9-
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F~it ~~ . ~~~~~~~~~~~~~ -n i - :~~ ~~( - ~ ~i — 1 ( - 1 . 2)  -
~~~ ~ Z e r o  (iUe e

(
~~-~

) i~v~ ( A s )  ±s i~ . t h ~ p r - , of o t ~. 5 . 1.  /J~;o by t~~e ~n :-; t r u : L -~

p~~~:c d i nq  (1. 1), ir id the - i s s u r i p t i n ofl ?~~‘ the lhs 1 ( L 2)

- c > f (~) 
. ) - c - c and ~hn  r h s  of (

~~. 2 )— G r. , j n )  n —  G oj b i )  n n

f C C lt r j e n . ~~w rec;all th t 0 < e e -
~~ 0— (

~ n, j(n) ri n — n —

Hence I’ f( 0  j ( n ) ’  0)d G 1
( I )  -. u r n  

~~~~~ J(~ )
) = f

0
(x) since (f ~~) ~mp Iies

th - t f is continuou s - i t  x md u . — x . Fur the same re-~sons ,G n,j(n)
f f( 0

fl , j ( n ) ’ 0)dG 0
( 0) - f f ( x , e) i C ( ~~) — 0 . Therefore ,

( 4 .  ~) f f  ( x , 0)dG ( 0) 
~~~~ 

f f ( : .~~, 0) cIG 0) for all x ~n R

I\ow the c o n d i t i o n s  B C C
0

(R )  t m d  (Al)  imply (as in the proofs of

Theorem 3 . 1  and Corol lary  3. 1) t ha t  (4 .  3) can  be extended to f g ( 0 ) d G (0 )

f g(0)  dG( 0)  for all g in C
0(R)  which is equivalent  to

x , ~
) ~ > G(~~) .  Since {x1, . . . , x , . . . }  is an arb i t rary  point in A

with P(A) = 1, the proof of the f i rs t  part of the theorem is complete . The

second part follows from the first part since Of(x, 0) e 0(R)

One advantage of our method of construction of C is that the r~ tc-

resul ts of can be used to obtain the corre s ponding rate resu l t s  for

as the following theorem shows . Recall  that is defined by ( 3 . 2 ) .

Theorem 4. 2. Let the conditions of Theorem 4. 1 hold and let (444) hold

with rate O (a ) with a i 0 . Ifn n

(AS) sup sup { I f(x , 0) - f(x ’, 0)1 ) <

t x ’ -x k o 0n

-10 -
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with 
~ 

i 0 as 6 i 0, then [max ~a , y ~~ I f~~~( x) - f G (x) ! = 0( 1)

a. s. (a. s. set is independent of x, bu t 0(1) could depend on x) .

Addit ional ly ,  if

(A6) s up [ E ( I
G

(x I )  - f G ( x))
2
~i x I 

- x l  < = 0(p 2 )

then [max {a 2
, p

~, y~~)]~~ E[(f ~~~ (x) - fG (x) 2
1 = 0(1) . ( Again , 0( 1) could

depend on x . )

Note. (445 ) is actually (A2 ) with a rate of convergence property.

Proof. Let {e } be such that  I x  - 0 I < 6 . By Theorem - 1 .  1,n , j (n )  n , j ( n )  n

G W > G a. s. The re sults  now follow from the fo l lowing  set of in-

equalities :

( 4 . 4 )  
~~~~~~~ 

- fG (x) I I f G O n j ( n )~ 
- 

~~~~~ J ( ~ ) ) I

+ ~~~~~ - 

~G ~°n , J ( n ) ~ 
+ -

~ ~~~~~~~~~~ 
- 

~G~
°n, j(n )~ 

+ Z’Yn

where the second inequality follows from (A5). Now observe that

- 

~~~~~~~~~ ~~~ n~
°n

~ J~~~ 
-

(4. 5) + 
~~G~

°n,J(n)~ 
- 

~&°n , j ( n)~
1 < 2 ~~ + ‘

~~G’°n,i(n)’

- f  (0G n ,J(n)

— 11 — 
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where the last  i nequal i ty  follows from the construction of G (fo r ex-

ample , see the argumen t  following ( 1 . 2 ) ) .  Now the f i r s t  resul t  f o l l o w s

from (4. 4) , ( 4 . 5 )  and (444 ) while the second result  follows fro m ( 4 . 4 ) ,

( 4 .  5) and (44 6) .

Remark 1. 1. If I and/o r I are f in i t e  intervals, then apply th e mod i-

f i ca t ions  suggested in Remark 3. 1.

Remark  4. 2. Here , we discuss a n application of Theorem 4. 1 to the

s t i n d / i r d  empir ical  Bayes decision problem of Robblns [4]. In an empirical

Bayes decision proble m , there is a sequence of ild vectors {(0 , X ) )

where ~ 
11d 

G, an unknown  d i s t r ibu t ion  and given 0 = 8~ Xn f( . , 8)

(e 2) . X is observable whi le  0 is not. The empirical Bayes problem

involves exhibi t ing  {t (X 1, . . . , X ) ) such that  the Baye s risk of using

in deciding about 0 less the minim um Baye s ri sk of deciding (using

X )  about 0 converges to zero , hopeful ly  with a rate. Robblns [4]

named such ru les  as asympto t ica l l y op t Lma l  empirical  Bayes rules (a.  o. e. B).

In th is  s i tua t ion , one can use Theorem 4 . 1 as follows : Use X1, . . Xn
to es t ima te  G by C as in Theorem 4. 2. Then take t = t (X .n n -i- i n -i- l 1’
X ) as the Baye s rule of deciding (using X ) about 8 when then i - i  n+l
prior distr ib ution is X~~ + ( l - X )t where ~ is the standard normal

dist ribution funct ion and 0 < x 0 as n t cc . Such a rule {t ) cannotn n
only be shown to be a. o. e. B. ,  but also componentwlse admissible under

fa i r ly  general  condit ions on ~7 , G and the los s fun cti on in volved In the

de f in i t i on  of the Bayes risk. For example in the problem of empirical

-12 -
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Bayes Squared error loss e s t ima tion  of 0, the above method and the

dominated  convergence theorem provide a. o. e. B. es t imators  which are

component  admiss ib le  ( with 0 restr icte d to [a , b]) provided G is in

the clas s of all d i s t r ibu t ions  with suppor t in [a , b], -x < a < b < x

The compactness  of the support of G is not an unrea l is it ic  assumption.

If the prior d i s t r i bu t ion  does not have a compact support , the asymptotic

op t ima l i t y  of the above pr ocedure can be obtained by appealing to an un-

publ ished lemma of Le Cam and Scheffe ’ s theore m. All these details ,

which are too long, will appear elsewhere. Before closing, we note that

one has  to use  both part s of Theo rem 4. 1 namel y, the convergence of

to and that  of f Of(~ , 0) dG to 5 Of( .. , 0) dG to obtain the

above em pirical Bayes results.

To obtain rate of converge nce result s in the above empirical Bayes

es ima tion problem , we make the following change. Instead of solving

the equations as described in th e paragraph preceding (4 . 1), solve the

equations (3 .  5) with 1G in (i i) and (iii) replaced by 
~~~ ~ 

and 
~G +

respectively along with the following equations :

(iv) 
~~~= - l  ~n , I sup{ Of(x , 0) 8n , 1 ~ 0 

~ °n , I +l~ ~ 
h G(x) -

(v) 
~~!= -l ~n , I inf {O f(x , 0) 0n , I 0 

~ 
0n , I +1~ ~ ~~~~ 

+

where hc
( . )  is in es t imator  of h G

( . )  = 5 O f( . , 0)d G a nd ~ is the smallest

positive number  for which the above five equations (i) through (v) can be

solved s imu lt ~ neou s ly .  Such a solution , ~s in Theorem 4 . 2 , will lead to

-13— 
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s imul taneou s rates  for the m u o n  square convergences  of and to

and h G 
respect ively.  In t u r n , these mean square conver gences  re-

sults  can be applied to ob t a in  ra tes  in the abc ’e empirical  Bayes esti-

mation proble m along with componentwise admiss ib i l i ty  since the funct i on

to be es t ima ted  is s imply h
G

(
~ ~~~~~~ 

based on X1, . . .  , X~ . This method

of obtaining componentwise admiss ib le  procedures has been used in a

nonparametr ic  context in Susarla and Phadia [6].

5. Examp les.  We consider two examples , one involving a location

parameter  family  of densi t ies  on I P (~~-~o , cc) and the other involving

a scale parameter  family  of densi t ies  on I = [0 , cc) . All densities are

wrt Lebesgue measure  on the real line or on [0 , cc)

To cons ider the location parameter case, assume that

(5. 1) h is a continuou s densi ty with h(x) -
~~ 0 as lx i -~ cc

If

(5. 2) f(x, 0) = h(x - 0), -cc < 0, x < cc

then we have

Theorem 5. 1. If f is defined via (5. 2) and satisfies (Al), the n G of

(3. 6) W G . If , In addition ,

(5. 3) sup ~I h ’ ( t ) I~ t E R)  < c c

(5 . 4) ~G
( x )  = (na ) 1 

~~j = l  k((x - )C~)/a )

-14 -
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I
where X~, . . . , X are lid f

G
(f

G
(x) = 5 h(x - 0 )  d G ( 0 ) ) ,  k is the s t andard  =

4 -1 -
~ wnormal densi ty and a = n , then G of (4.  1) 0 a. s. provid edn n

of (A4) = ~~
c 

wit h 0 < 4 c  < 1 . If 6~ = 0(n ’
~) with y > I, then

I f ~~ (x) - f
0
(x)t = 0(n~~ ) a. s. Moreover , E[(f~~~(x) - f

0
( x) ) 2

] =

- -min {2c , l-2c)0~n ) .

Proof. The first  part of the theorem follows from Corol lary 3. 1 upon ob-

serving that  (5 . 1) imp lies  the condi t ions ( A Z )  and ( 44 3)  and tha t  ‘9 C C
0

( R)

For the second resul t , observe that  (5 . 1) and (5 .  3) , r e s p e r - t i v e l y ,

imply tha t  f
0 

and f~ are bounded. Therefore Corollary 2. 6 with r = 0

of Sch uster [5] obtains that

i f  - -
~~ 0 a. s.

where Ii stand s for the supremum norm and . 0 < -Ic < 1 . Thus (44 4)

-calso hold s with C n . Now Theorem 4. 1 obtains  the re sult G —
~ -- Gn n

a. s.

The third pa rt of the theorem follows since

sup sup {I f ( x , o) - f(x ’ , O ) I } < o l i h ’ I I
Ix ’ -x I <  6 0n

implying (44 5) with ~y = 6 = n~~ . To obtain the L2 convergence re sult ,

2 -min{ Z c , l -2c )we verify (A 6) with p = n as follows:

(5 . 5) E[(
~ G(x ’) - fc(x ’))

2
1 var(

~ G(x ’) )  + (E[I G(x )] - f0(x ’) )
2

By the definition of and Lemma 2. 3 of Schuster [5], E[~
’
0

(x ’)]  -

1 < c 1 an for some constant c1, a nd since k is bounded by un i ty

-15-



and since X 1, . . .  , X are lid , var( 1
0(x ’) )  < ( n a

2 ) 1 
. Hence, since

a = n~~~, (5. 5) = O(n m in {2c , l 2 C }
) This verifi es (A6) since 0 < 4 c  < 1

and so the last  resul t  follows.

For consider ing the scale parameter case , ass u me that  h is a

cont inuou s dens i ty  on [0 , x )  with

1~ 
sup {y h (y ) I y > n )  0 , sup ( i h ’ ( y ) ~ y > O )  < cc

(5. 6) (ii) sup{yih’(y) I y > o} < c c  and

L ( i i i )  sup{y 2 I h ’ ( y ) J y > o) < c c

If

(5 . 7) f( x , 0) = 0h(x O) for x, 8 > 0

then we have the following theorem whose proof is omitted since it Is

si milar  to that of Theorem 5. 1.

Theorem 5. 2. If f is defined via (5. 7) and satisfies (Al) , then Gn ~~

( 3 . 6 )  W > G . If , in addition ,

(5. 8) 5 o~ dG(e) <~~~

and is defi ned by (5 .4)  where X~ are iid 
~G~

= 5 8h(x O)dG( 0)) ,  th en
0

G of (4. 1) W > G a. s. provided c of (A5) = ~-c with 0 < 4 c  < 1

If 6 = 0(n ~~ ) with ‘~r > 1 then I f ~~ (x) - = O(r( c
) a. s. Moreover

E[(f
~ n

(x) - 10(x))
2 } = O(n m {Zc , l -2 c} )

Remark 5. 1. Theorem 5. 1 includes the family of normal densities indexed

by the mean and with known variance while Theorem 5. 2 includes the family

-16-
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of scale para meter  exp onent ial  d i s t r ibut ions  with the second moment of

the mixing d i s t r ibu t ion  f in i te .

Remark 5. 2. The resu l t s  of this paper can be extended when both the

argu ment s x and 0 are vectors and can be applied to mixtures of dis-

crete probabil i ty d is t r ib ut ions  with appr opriate changes. It Is well-

known that the family of binomial dist ributions {B( n , p) 1 0 < p < 1) is

not ident i f iable .  That this  is the case can be readily seen from Theorem

2. 1 since the class  of polyno mials of degree at most n does not generate

C o[0 , l]

6. Some other est imators  and comparison with out estimator.  We briefl y

describe three method s of estimation of G and compare their results with

those presented here. In the method by Deely and Kruse [2], the finite

interval  A (on which G is assumed to have support) is partioned by the

points ~~~~ ~~~ ~nn so that  there is a sequence {4 }  of classes of

d i s t r ibu t ions  such that  the support of each distribution in 4 is In

• . . ,  x }  and for every G with support in A , there exists a

- wsequence {G } with 0 in 4 and G ~~> G . Then their methodn n n n

chooses a G in 4 which minimizes the sup distance Ii F - F Ii
where H is in 4 , n F ( ~ ) = 

~~j = l  1[X .< .  and FH(
~

) = 5 F ( ,  8) d H

wh ere F( . , 0) is a dis t r ibut io n function for each 0 . They point out that

their method involves fi nding an optimal strategy in a game with a payoff

matrix which depend s on F , and X ln~ ~ 
X nn They point out that A

ca n be taken to be P . Chol [1] uses the Wolfowltz distance function

-17- 
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d(G , G) = 5 (G(x) - G(x)) ~ dG(x) and in the word s of Deely m i  Kru se [2 ] ,

the computa t iona l  f e a s i b i l i t y  of Choi ’ s method is not c - l - ~ r l y  u s t a b l i s h r r i .

Moreover , ChoPs [1] method needs the solut ion of i dynamic  p rogramming

proble m , and considers  only f i n i t e  mi xtures.  Meeden f s }  co n s t ruc t s  a

pr obabili ty d is t r ib ution on ~~, the c lass  of all  p robabi l i ty  d i s t r i b u t i o n s

on [0 , cc) and then show tha t  the Bayes e s t ima te  based on the f i r s t  n

observations corresponding to the constructed prior converges W > to

the true element G
0 

in 4 . Again the solution of f inding  es t imates  by

Meeden ’ s [3] method appears  as hard as we have in the paper. Our

est imators  have the simpl icity that they need only a linear programming

com putation (see the note following (3. 6)) , have some distance properties

( Theorem 4. 2), and will give componentwise admissible empirical Baye s

esti mators with and without rates with a small amount of extra work if

the support of the prior Is in a compact set. It is not clear how one can

recover rate results for the density and from the weak convergence

results of the above three authors.

-18- 
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